NO and cGMP mediate angiotensin AT2 receptor-induced renal renin inhibition in young rats.
نویسندگان
چکیده
We hypothesized that angiotensin subtype-2 receptor (AT(2)R) inhibits renal renin biosynthesis in young rats via nitric oxide (NO). We monitored changes in renal NO, cGMP, renal renin content (RRC), and ANG II in 4-wk-old rats in response to low sodium (LNa(+)) intake alone and combined with 8-h direct renal cortical administration of AT(1) receptor blocker valsartan (VAL), AT(2)R blocker PD123319 (PD), NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME), NO donor S-nitroso-N-acetyl penicillamine (SNAP), or guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,2-alpha] quinoxaline-1-one (ODQ). In addition, we monitored renal endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) in response to VAL or PD. LNa(+), VAL, PD, l-NAME, and ODQ increased RRC, ANG II, and renin mRNA. PD and l-NAME decreased NO and cGMP, while SNAP reduced RRC, ANG II, renin mRNA, and reversed the effects of PD. PD also reduced eNOS and nNOS protein and mRNA. Combined treatment with PD, l-NAME, or ODQ and VAL reversed the effects of VAL and caused further increase in RRC, ANG II, renin mRNA, and protein. ODQ reversed the effects of SNAP. These data demonstrate that the renal AT(2) receptor decreases renal renin biosynthesis and ANG II production in young rats. Reversal of the PD effects by SNAP and SNAP effects by ODQ confirms that NO and cGMP mediate the AT(2) receptor inhibition of renal renin production.
منابع مشابه
CALL FOR PAPERS Control Mechanisms of Renin Synthesis and Release: A 21st Century Perspective NO and cGMP mediate angiotensin AT2 receptor-induced renal renin inhibition in young rats
Siragy HM, Inagami T, Carey RM. NO and cGMP mediate angiotensin AT2 receptor-induced renal renin inhibition in young rats. Am J Physiol Regul Integr Comp Physiol 293: R1461–R1467, 2007. First published August 1, 2007; doi:10.1152/ajpregu.00014.2007.—We hypothesized that angiotensin subtype-2 receptor (AT2R) inhibits renal renin biosynthesis in young rats via nitric oxide (NO). We monitored chan...
متن کاملThe effect of AT2 and Mas receptors antagonists on renal hemodynamic and excretory disorders induced by ischemia/reperfusion in male and female rats
Introduction: Renal ischemia-reperfusion (RIR) may disturb renin-angiotensin system components. In this study, the effects of Mas receptor (A779) and AT2 receptor (PD123319) antagonists were examined in RIR rats. Methods: Total 60 male and female Wistar rats were assigned into 10 groups (n=6 in each group), including sham-operated group, RIR groups treated with the vehicle, A779, PD123319, ...
متن کاملThe subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.
The angiotensin AT2 receptor modulates renal production of cyclic guanosine 3',5'-monophosphate (cGMP; J. Clin. Invest. 1996. 97:1978-1982). In the present study, we hypothesized that angiotensin II (Ang II) acts at the AT2 receptor to stimulate renal production of nitric oxide leading to the previously observed increase in cGMP. Using a microdialysis technique, we monitored changes in renal in...
متن کاملAngiotensin II type 2 receptor agonist directly inhibits proximal tubule sodium pump activity in obese but not in lean Zucker rats.
We have reported recently that the renal angiotensin II type 2 (AT2) receptors are upregulated and involved in promoting natriuresis/diuresis in obese but not in lean Zucker rats. In the present study, we tested the hypothesis that there is an enhanced AT2 receptor signaling via NO/cGMP pathway leading to greater inhibition of the Na(+), K(+)-ATPase (NKA) activity in the proximal tubules (PT) o...
متن کاملAngiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway.
Angiotensin II AT2 receptors act as a functional antagonist for the AT1 receptors in various tissues. We previously reported that activation of the renal AT2 receptors promotes natriuresis and diuresis; however, the mechanism is not known. The present study was designed to investigate whether activation of AT2 receptors affects the activity of Na+-K+-ATPase (NKA), an active tubular sodium trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007